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ABSTRACT: When a low density brush of single-stranded DNA
(ssDNA) targets end-grafted to a surface is immersed in a solution of
complementary ssDNA probes, a regular brush of DNA duplexes is
formed by 1:1 hybridization between probe and target DNA. We
suggest that in higher density brushes of ssDNA this process competes
with cross-hybridization of a target strand to several neighboring probe
strands resulting in the formation of a cross-linked DNA network. We
analyze a simple 2D model of a dense DNA brush and use analytic
methods and computer simulations to find how the conditions for
network formation depend on system size and DNA length. We argue
that in 3D brushes cross-hybridization will nearly always lead to network formation and suggest that this may explain some
intriguing results on dense DNA brushes. Experiments on DNA monolayers and concentrated DNA solutions that could test our
predictions are proposed.

Hybridization of complementary (target) strands to
surface-grafted (probe) single-stranded DNA (ssDNA)

is used in all microarray-based methods for DNA analysis.1−4 In
these applications the density of the grafted molecules is
sufficiently low so that each target strand hybridizes with a
single probe strand.
In this communication we propose that in dense DNA

brushes where the distance between the grafting points is much
smaller than the radius of gyration of isolated strands a target
strand can hybridize to two or more neighboring probe strands
by switching from one to the other and forming an interstrand
junction (see Figure 1) that resembles a Holliday junction in
genetic recombination5 and that under suitable conditions a

macroscopic network of cross-hybridized DNA molecules can
form. Since all grafted DNA molecules are identical, interstrand
junctions can form anywhere along the DNA sequence (this
degeneracy is lifted in DNA origami where sequences are
predesigned to create a junction in a particular location on
ssDNA5,6). Below we use a toy model of a DNA brush to study
the conditions under which such a network is created.
To obtain analytic results we first consider a 2D polymer

brush of 2k ssDNA molecules, grafted along a line. We assume
that hybridization is complete (no unpaired DNA except at
interstrand junctions) and that DNA oligomers are shorter than
the Kuhn segment of double helix DNA (300 base pairs). Using
mean-field arguments we show in the Supporting Information
(SI) that grafted probe strands can be represented by straight
lines of length l that lie on a 2D lattice which is completely
covered by target strands (see Figure 2).
Inspection of Figure 2 shows that there are two kinds of

nodes on the lattice: (1) interstrand junction (junction, for
brevity) in which each of the two target strands that enter the
node hybridizes with two probe strands and therefore changes
direction at the crossing point (junctions are indicated by
circles in Figure 2) and (2) pseudocrossing (crossing, for
brevity) in which each of the target strands is hybridized to the
same probe strand on both sides of the node and therefore
maintains its direction at the crossing. Thus, a junction
represents a connection between two chains, while a crossing
represents two chains that are not connected at this point. All
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Figure 1. DNA brushes. Modes of hybridization in a high density
brush: a target strand that hybridizes with a single probe strand (left
and center) and two target strands each of which switches between
two probe stands, thus connecting them and creating an interstrand
junction (right).
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possible states of hybridization are uniquely determined by
specifying the state of each of the nk lattice nodes: a crossing or
a junction. The DNA sequence is assumed to be sufficiently
nondegenerate to ensure that it is a unique function of the
distance from the surface (z), so that target DNA that begins to
hybridize with a probe starting from the bottom of the lattice
and then switches to another probe strand can only go up and
therefore behaves as a directed random walk. In this
nondegenerate case even a single step of length a in the −z
direction would lead to mismatch between the bases of the
target and the probe, and taking the distance between crossing
points as greater than or equal to a DNA period of 10.5 bp (to
ensure stable interstrand hybridization), such a mismatch would
carry a prohibitively large energy penalty. Assuming that each
molecule is made of n segments of length a (l = na), a
hybridized target strand will be represented either by a straight
line (regular DNA duplex) or by a broken one (interstrand
hybridization); in both cases its two ends will be located at the
bottom and the top of the brush, respectively (Figure 2).
Since the formation of an interstrand junction carries energy

penalty ε due to bending, stacking, and base pairing defects, the
probability of creating such a junction is p = exp(−ε/kBT)/[1 +
exp(−ε/kBT)] < 1/2. When p is sufficiently small, interstrand
hybridization is negligible, and most DNA will form duplexes.
Upon increasing p, the number of “cross-links” between
adjacent probe strands will increase until the gelation threshold
is reached at p = pgel, and a connected network that spans the
entire system (such that in a typical realization there is at least
one cross-link between any of 2k grafted chains) will form.
Note that while our problem resembles percolation on a 2D
lattice,7 it differs from it in that each hybridized probe can
contain up to n junctions, and therefore, to introduce a break in
the network one would have to generate a region of thickness n
that does not contain any junctions. A more careful analysis
shows that the 2D network will break into two disconnected
parts when a triangle or an inverted triangle (the latter is shown
in the inset to Figure 2) that does not contain any junctions
appears in the lattice. The value of pgel can be estimated as
follows: if one starts with a fully connected network and
decreases p, the number of junctions will decrease until a
triangle that does not contain any junctions appears and the

network is broken. Since such a triangle contains n(n + 1)/2
crossings and its apex can be at any of k locations, for k not
exponentially large compared to n the probability of its
formation is 2k(1 − p)n(n+1)/2 (the factor of 2 reflects the fact
that the triangle can be normal or inverted). At p = pgel this
probability approaches unity, and we obtain an expression for
pgel in terms of length and number of grafted molecules

= − − +p k1 (2 ) n n
gel

2/[ ( 1)]
(1)

Inspection of this expression suggests that as system size
increases pgel becomes larger than 1/2 and a network that spans
the entire system cannot form. This concurs with the
expectation that as k/n → ∞ our problem is reduced to
percolation in 1D for which pgel = 1. However, since pgel
decreases even more rapidly with DNA length, this is not
necessarily the case. Indeed for n2 ≫ ln k, eq 1 can be
approximated as pgel ≃ (2/n(n + 1))ln(2k) ≪ 1. For example,
taking the spacing between grafting points to be 4 nm (grafting
density8 6 × 1012 DNA/cm2) and “surface” dimension of 20
μm gives k = 5000. For n = 30 we get pgel = 0.02, and therefore
a 20 μm long network will form if the free energy cost of an
interstrand junction is ε ≤ 3.9 kBT. Previous estimates yield
about 2kBT per junction,5 and we conclude that the conditions
for network formation can be satisfied in our toy model.
Next, we performed computer simulations in which for each

pair of values (n,k) a lattice was generated and its nodes were
randomly labeled as crossings (with probability 1 − p) or as
junctions (with probability p). The process was repeated 10 000
times, and in each realization we checked for the appearance of
a break (triangle without junctions). We then calculated p = pgel
for which there was one triangle on the average in our ensemble
of realizations. Comparison between eq 1 and results of
computer simulations is shown in Figure 3.

So far, we did not carry out computer simulations of network
formation in a 3D brush; nevertheless, we can estimate pgel in
the spirit of the arguments that led to eq 1. To generate a break
in a 3D network one has to separate the two sides of the k × k
surface by a wall that does not contain any junctions, of
thickness and height n, and of some length L (a local defect
such as the triangle shown in Figure 2 does not affect the global
connectivity of the 3D network). Such a wall can be thought of
as a self-avoiding walk of length L and step n, and the

Figure 2. Hybridization on a 2D lattice. A lattice formed by grafted
ssDNA probes of n = 8 segments (thin gray lines), with 6
complementary ssDNA targets hybridizing to them in various
conformations (thick colored lines). Circles represent interstrand
junctions. Other hybridized target strands are not shown. Inset: the
green inverted triangle represents a region completely filled with
pseudocrossings that generates a break in the network.

Figure 3. Network formation threshold. Comparison between eq 1
(solid line) and simulation results for pgel as a function of system size k
(in the range 50−5000) and DNA length n (in the range 4−18).
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probability of its realization is proportional to zL(1 − p)n
2L

where zL represents the number of walks of length L (up to
power law corrections to the main exponential). Since we have
replaced the wall by a line, the effective coordination number z
is of the order z0n

2 (z0 is the coordination number of the lattice
of grafting points), and the probability can be written as exp{L·

ln[z0n
2(1 − p)n

2

]}. This probability decreases exponentially
with L (the argument of the logarithm is smaller than unity),
and therefore the sum over the paths is dominated by the
shortest onesstraight lines of length L ≃ k. Such a wall will
contain n2k crossings, and since n2k ≫ ln k always holds, this
yields

≃ ≪p
k

n k
ln

1gel
3D

2 (2)

and we conclude that cross hybridization in the 3D brush will
lead to formation of a network even when the probability of
forming an interstrand junction is very small.
We presented a theoretical analysis of network formation by

spontaneous cross-hybridization in the DNA brush. The
mechanism of network formation is purely entropic: for
sufficiently long DNA chains, the entropy associated with a
large number of ways of forming a network can overcome the
free energy cost of cross-hybridization. While our exact results
were obtained for a 2D lattice model, the prediction that
probability of gelation (for fixed p) increases with DNA length
is physically intuitive and is expected to be robust. We
presented a tentative estimate which suggests that such
networks will form even under less restrictive conditions in
dense 3D DNA brushes. We plan to test these results by off-
lattice simulations using coarse-grained models of DNA
hybridization.9

To test our predictions experimentally, one would have to
carry out nanomechanical studies10 that can distinguish
between regular and cross-linked DNA monolayers: the shear
modulus of a grafted network is expected to be larger than that
of a regular brush; the height of a DNA network should be
smaller that that of a brush of DNA duplexes. Notice that in
addition to DNA length and grafting density, experiments may
also be sensitive to temperature and sequence since the free
energy of cross-hybridization depends on both. As there is only
a single lowest energy state that corresponds to regular
hybridization and formation of DNA duplexes and a huge
number of higher energy states that correspond to different
network structures formed by interstrand hybridization, the
latter may dominate the kinetics of hybridization in experi-
ments on dense ssDNA brushes. Indeed, kinetic effects
resulting from hindered diffusion of target DNA into the
forming network can explain the observed lowering of
hybridization efficiency with increasing ssDNA monolayer
density.8 Network formation may also explain the change
from intermolecular repulsion to attraction (despite the higher
Coulomb repulsion) following hybridization of grafted probe
ssDNA with complementary target ssDNA oligomers, observed
by nanomechanical cantilever motion.11 Another intriguing
possibility is that networks may form in dense dsDNA solutions
that are denatured by heating above the melting temperature of
DNA (denaturing the duplexes) and then annealed by cooling
(forming a network). Such DNA networks are expected to be
metastable upon dilution in water and can be directly observed
by fluorescence from intercalating dyes and by other methods.
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